If it's not what You are looking for type in the equation solver your own equation and let us solve it.
96+20x+x^2=192
We move all terms to the left:
96+20x+x^2-(192)=0
We add all the numbers together, and all the variables
x^2+20x-96=0
a = 1; b = 20; c = -96;
Δ = b2-4ac
Δ = 202-4·1·(-96)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-28}{2*1}=\frac{-48}{2} =-24 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+28}{2*1}=\frac{8}{2} =4 $
| 0.20x+0.25(50)=25.5×= | | 6-18h=-16h+18 | | -x+3/4(5)=-6 | | x=3x=128 | | x+10=3x+28 | | 4(x+7=7+x | | -63=-7(x+5) | | 42/132=301/n | | 5x-2(2x+-9)=18 | | 3x+12=7x+28 | | 3(w+2)=5w-8 | | -6+8x=3(23x+37)+x | | -(1/5)x-18=2 | | 1/2=q= | | 7.21=7(m+3.2) | | 5x-14=17x+22 | | -9u=-10u+18 | | 180x+45=1,350 | | 4(2x+5)−29=3(x+2) | | 1/3x+7=-6 | | 45x+180=1,350 | | 38=v/2+15 | | (4*8)*3=4*(8*n) | | y/5-13=11 | | 10x+0.04=60 | | 4x-8=34-5x | | 6+17x=5(5x+11)+x | | 1/3x+5=-6 | | 3c^2=576 | | 10x-0.04=60 | | -(x-31=-x+3 | | 12x+(-8)=7x+34 |